

From mTouch™ to 1D/2D/3D gesture Технология mTouch™ для Бесконтактных кнопок Емкостной клавиатуры Распознавания жестов

mTouch

Slide 1

Capacitive Touch Circuit Analysis

- Scanning Techniques
- Grounding Scenarios
- Noise

• Hardware

- Layout Recommendations
- Design Considerations

• Firmware: Digital Filtering

- mTouch[™] Solution Framework Acquisition
- Summary

Capacitive Touch Circuit Analysis

mTouch[™] Solution Circuit Analysis The Capacitance Equation

$$\mathbf{C} = \mathbf{\varepsilon}_{\mathrm{r}} \mathbf{\varepsilon}_{\mathrm{0}} \frac{\mathbf{A}}{\mathrm{d}}$$

mTouch[™] Solution Circuit Analysis The Capacitance Equation

$$\mathbf{C} = \boldsymbol{\varepsilon}_{\mathrm{r}} \, \boldsymbol{\varepsilon}_{\mathrm{0}} \, \frac{\mathbf{A}}{\mathrm{d}}$$

- C capacitance / sensitivity
- **ε**_r relative permittivity
- A overlapping area
- d distance

(ε₀ is the permittivity of a vacuum (8.85 x 10^{-12 F}/m)

mTouch[™] Solution Circuit Analysis The Capacitance Equation

$$\mathbf{C} = \boldsymbol{\varepsilon}_{\mathrm{r}} \, \boldsymbol{\varepsilon}_{\mathrm{0}} \, \frac{\mathbf{A}}{\mathrm{d}}$$

Material	٤ _r
Air	1
Polyethylene	2.25
Polystyrene	2.4 – 2.7
Glass	4 – 10
FR-4	4.8
Water	80

mTouch™ Solution Circuit Analysis

CTMU Scanning Review

Known State

Simultaneous Charge

Noise Susceptible Driven by Current Source 200ns - 2µs

Internal External

mTouch[™] Solution Circuit Analysis

CVD Scanning Review PIC® Microcontroller

Opposite States

Connect Capacitors

Noise Susceptible 125ns - 5µs

Perform Conversion

© 2012 Microchip Technology Incorporated. All Rights Reserved.

mTouch

Slide 10

Internal External

Finger's Capacitance

500

Added 'Press' Capacitance in pF (User's Finger Capacitance)

0.6

0.4

(Bad Hardware)

1

0.8

Slide 14

© 2012 Microchip Technology Incorporated. All Rights Reserved.

0.2

© 2012 Microchip Technology Incorporated. All Rights Reserved.

Advanced Circuit Analysis Grounding Scenarios

mTouch

Advanced mTouch™ Solution Analysis

Grounding Models

Battery Powered, Isolated System

Mains-Connected, Shared Ground

Advanced mTouch™ Solution Analysis

Grounding Models

"Long distance" coupling: C_{BODY} and C_{GND} Sensor \rightarrow Body \rightarrow Earth Ground \rightarrow Device Ground

"Local" coupling: C_{FINGER} Sensor → Finger → Device Ground

Mains-Connected, Shared Ground

Shared Ground means...

C_{GND} is a short Full benefit of C_{BODY}

No change for C_{FINGER}

Battery Powered, Isolated System

Different grounds mean...

C_{BODY} limited by C_{GND}

mTouch

Noise

mTouch

Slide 20

Push Buttons Ca

Capacitive Sensors

Noise Major Sources of Noise

MICROCHIP

MASTERs 2012

Conducted Noise Industry Standard :: IEC 61000-4-6

Conducted Noise Industry Standard :: IEC 61000-4-6

Conducted Noise Industry Standard :: IEC 61000-4-6

(V_{DD} – V_{SS}) No change!

© 2012 Microchip Technology Incorporated. All Rights Reserved.

Slide 28

Conducted Noise Industry Standard :: IEC 61000-4-6

Conducted Noise Industry Standard :: IEC 61000-4-6

Conducted Noise Industry Standard :: IEC 61000-4-6

Remember – this is what we are simulating... How does this affect the mTouch[™] solution?

Voltage-based Acquisition Conducted Noise Industry Standard :: IEC 61000-4-6

Місеоснів

MASTERs 2012

Capacitive Touch Noise Behavior

Important Testing Considerations

- Tests can change the behavior of the system
- Check the 'press' behavior at each frequency
- Undesirable System Behaviors
 - False Triggers
 - Dead Buttons
 - Flickering Sensors
 - Increased/Decreased Sensitivity

Capacitive Touch Noise Behavior

Fake Fingers

Used to create a repeatable finger press

- Do NOT connect directly to ground
- Microchip uses...
 - 1.6 kΩ in series with 220 pF
 - ~1 m in length

Hardware Design Recommended Design Considerations

Consideration #1 Ideal sensor size = area of finger press

Exceptions - Consideration #1 Ideal sensor size = area of finger press (15 x 15 mm or 0.6 x 0.6 inch)

1. Proximity sensors

Exceptions - Consideration #1 Ideal sensor size = area of finger press (15 x 15 mm or 0.6 x 0.6 inch)

Proximity sensors
Thick Covers

Consideration #2

Separate sensors as much as possible. Ideal minimum is 2-3x the cover's thickness.

Consideration #2

Separate sensors as much as possible. Ideal minimum is 2-3x the cover's thickness.

Why (#1): Reduces Unwanted Finger-to-Sensor Coupling

Separate sensors as much as possible.

Why (#2): Reduces Unwanted Sensor-to-Sensor Coupling

Separate sensors as much as possible.

Why (#2): Reduces Unwanted Sensor-to-Sensor Coupling

Separate sensors as much as possible.

Why (#2): Reduces Unwanted Sensor-to-Sensor Coupling

© 2012 Microchip Technology Incorporated. All Rights Reserved.

mTouch

Slide 48

Consideration #3 Keep the cover as thin as possible.

Consideration #3 Keep the cover as thin as possible.

For thicker covers...

- 1. Increase sensor size
- 2. Create a slot for the PCB
- 3. Higher permittivity covering material

Tip: Bridging air gaps

Consideration #4 Use ground planes to your advantage.

Consideration #4 Use ground planes to your advantage.

MICROCHIP MASTERS 2012 HARD CONSIDERATIONS

Consideration #4 Use ground planes to your advantage.

© 2012 Microchip Technology Incorporated. All Rights Reserved.

© 2012 Microchip Technology Incorporated. All Rights Reserved.

Consideration #6 Keep sensor traces thin and short.

Larger trace lengths mean...

Increased C_{BASE} (Decreased Sensitivity)

Hardware Design Adhesives Considerations

Consideration #7 Always use an appropriate adhesive

Air gaps decrease sensitivity (C_{FINGER} and C_{BODY}) by 3-10x!

Hardware Design Adhesives Considerations

Consideration #7 Always use an appropriate adhesive

Choosing an Adhesive

- 1. Keep it thin to keep sensitivities high!
- 2. Read the bonding instructions
- 3. Watch for temperature limitations
- 4. Be careful of bubbles!
- 5. Match it with the covering material

Consideration #8 Put a series resistor on each sensor

Warning If the injected noise rectifies the ESD diodes, the CVD behavior will invert.

Warning If the injected noise rectifies the ESD diodes, the CVD behavior will invert.

Software Techniques

© 2012 Microchip Technology Incorporated. All Rights Reserved.

Software Techniques Buttons vs. Sensors

Software Techniques Digital Filtering

mTouch

Slide 68

Software Techniques Acquisition

Oversampling

The process of using more than one sensor sample per reading.

Software Techniques Acquisition

Oversampling

The process of using more than one sensor sample per reading.

Software Techniques Acquisition

Oversampling

Great initial benefits, but diminishing returns

Jittering the Sample Rate Avoiding harmonic frequencies

Jittering the Sample Rate Avoiding harmonic frequencies

Decimation Filter Reject impulse noise

```
if (newReading > decimatedValue)
{
    decimatedValue++;
}
else if (newReading < decimatedValue)
{
    decimatedValue--;
}</pre>
```


Decimation Filter

Reject impulse noise

Decimation Filter

Reject impulse noise

Scaling

16

mTouch[™] Solution CVD Framework

Summary

mTouch

Slide 78

- 1. Robust systems have a high SNR
- 2. Your hardware choices determine your sensitivity

Default Acquisition Behavior

Hardware Design Considerations:

- 1. Ideal sensor size is the area of a finger press (15 x 15 mm)
- 2. Separate sensors as much as possible (2-3 x cover)
- 3. Keep the cover as thin as possible (< 3 mm)
- 4. Choose a high permittivity covering material
- 5. Use ground planes and guard rings to your advantage Front Plane: Increased C_{GND} Back Plane: Radiated Shielding
- 6. Keep sensor traces thin and short
- 7. Always use an appropriate adhesive
- 8. Put a series resistor on each sensor line

Acquisition Techniques:

PROJECTED CAPACITIVE TOUCH (PCAP) HARDWARE

Cap Sense Button

Using a capacitive sensing technique to measure the capacitance of a surface.

© 2012 Microchip Technology Incorporated. All Rights Reserved.

Slide 83

Using several cap sense buttons next to each other, using relative signal strengths to interpolate a position.

Cap Sense X-Y Sensor

Use a grid of cap sense buttons to determine discreet samples on two axis?

MICDOCUID

MASTERs 2012

Better Cap Sense X-Y

Use overlapping sense bars to determine location on two axis.

Maximize exposure of each axis electrodes to a touch.

Advantages: + Smaller Overlap

Issues: - 2+ Layers - Small signal in overlapping areas

Diamond interleaving of layers

Necks at layer Electrode crossovers

Projected Capacitive Sensor Cross Section

Sensor cross sectional view

Lots of innovation has occurred

Many Proprietary Patterns

Electrodes with comb like meshing fingers.

Transmitter (Bottom) Electrodes

Receiver (Top) Electrodes

+Comb geometry creates capacitive integration from one electrode to the next.

+Capacitive integration provides more uniform signal change as a touch transitions from one electrode to the next.

+Increased signal allows the designed spacing between adjacent electrodes to be increased.

+Increased spacing between adjacent electrodes reduces the total number of electrodes and associated electronics

PROJECTED CAPACITIVE ALGORITHMS

Core Algorithms

Capacitive Sensing

- Self Capacitance
- Mutual Capacitance
- Baselining
- Filtering
- Touch Identification
- Touch Tracking
- Gesture Detection

Works the same as mTouch[™] Solution Buttons & Sliders

• Can Use CVD, CTMU, etc.

- > Can measure self capacitance of any X or Y electrode
- Can determine which X and Y electrodes are touched.
 - Can not correlate multiple touches into (X,Y) locations.

Mutual Capacitance

- Works the same as mTouch[™] Solution Buttons & Sliders
- Can Use CVD, CTMU, etc.
- Important addition: "Stimulus" (TX) during measurement.

Can correlate multiple touches into (X,Y) locations.

Parasitic and Δ Touch

Dependant on sensor and system

Item	Capacitance
Electrode Parasitic	100 pF
Strong Electrode Touch	0.5 to 1.0 pF
Weak Electrode Touch	0.05 pF

• Self on all receivers to determine which are touched

• Mutual with one receiver (Y07) and each transmitter

• Two simultaneous touches are shown below

mTouch

MICROCHIP

MASTERs 2012

Dual Touch Example – Mutual Location #1

Mutual with each transmitter and Y07 receiver
 Identify (X05, Y07) as Touch #1

Dual Touch Example – Mutual Location #2

Mutual with each transmitter and Y03 receiver
 Identify (X02, Y03) as Touch #2

• Report touches at nodes (X05,Y07) and (X02,Y03)

Issues with Capacitive Sensing

Mutual Capacitance can be time consuming for large sensors

Different areas of sensor will have different measurements

- Due to uncontrolled variations in the touch systems capacitance, a touch is determined from the:
 Capacitance change from a "No touch" baseline
- Provides relative, as opposed to absolute values.
- A baseline image of the sensor is retaken at regular intervals, when there is not a touch.
- A baseline value is required for each receiver self and each receiver / transmitter node mutual.

Touch Identification

Select Tallest peak?

- What about two or more activations?
- Examine Slopes?
 - What about pise ("small" peaks)?

- Self is the Whole Column
- Potential for 2 touches almost aligned

- Post process "nudge" to eliminate extra peaks
- Compare current to adjacent, "nudge" to higher location
- Eliminate Duplicates

Touches Identified!

 After "nudging" all potential peaks, we have identified all potential touch nodes.

Current touch resolution is the course X & Y electrode/bar pitch. (e.g. 12x9)

Resolution - Course

- Course touch position identifies X and Y electrodes with the greatest signal change.
- Provides a touch position resolution equal to the electrode pitch.

Resolution - Interpolated

Resolution is improved by interpolating signals between electrodes.

- 1) Course touch position determined as peak signal electrode.
- 2) Electrodes adjacent to the peak electrode are measured
- 3) Offset = Pitch / 2 * (Side Max Side Min) / (Peak Side Min)
- 4) Current design yields 128 counts between adjacent electrodes.

- Touch Identification occurs each sample
- Tracking occurs between samples

- Touch Identification occurs each sample
- Tracking occurs between samples

© 2012 Microchip Technology Incorporated. All Rights Reserved.

s = 1

Touch Tracking Cont.

- Basic Tracking: Distance between Identified Points at t=0 and t=1 – shortest is best match
- More advanced: Vector Tracking
- Faster Sampling = more accurate tracking

GESTURES

What are Gestures?

- No different from any other touch or activation
- Use context to determine interpretation of the activation

Gesture Support

Basic single-touch gestures:

- Tap
- Tap & Hold
- Double-Tap
- Swipe
- Swipe & Hold

FILTERING ALGORITHMS

Integration

Touch Detection

• Coordinate

• Take a longer measurement

Decreases the influence of any short-term events

mTouch

Touch Detection Filter

- Only accept measurement if above a threshold
- If measurement below threshold, ignore

- Average multiple coordinates together
- Change number of coordinates based upon difference in coordinates
 - Large Delta Fast Movement Average 4
 - Small Delta Slow Movement Average 16
- Large filter helps eliminate "jitter"

MICROCHIP PCAP SOLUTIONS

Core PCAP Requirements

- High Speed Capacitive Sensing
- GPIO Pins for TX lines
- Cap Sense Pins for RX lines
- RAM for baseline storage and processing

© 2012 Microchip Technolo

Which PIC[®] MCUs have been used?

- Anything from a PIC16 on up.
- We have developed on:
 - PIC16F1937
 - PIC16F707
 - PIC18F46K22
 - PIC24FJ64GB004
 - PIC24FJ64GB106

PCAP Hardware

- Self Contained, using a single PIC[®] MCU for graphics and touch
- Sleep
- Single Touch Gestures
- >5 touch detection
- 2 touch drawing
- Contact your local FSE
- Available from Dev Tools Soon

Tuning

• Self Carachance

Mutual Caractance

EVALUATING A TOUCH SCREEN SOLUTION

Sensor Evaluation

Many possible ways

- Touch Performance
- Noise Performance
- Standard Tests
 - Single Touch
 - Dual Touch

Important Note on Evaluating Touch

 Always evaluate based upon the intended application

 A DevKit will perform differently than the final unit – integration is important

- "Signature Capture" 100pps
- Microsoft recommended 50pps/touch
- 100pps = 10ms per X/Y coordinate transmitted
- Sensing, filtering, & transmitting

- False Activation
- No Activation
- Zinger
- Stop-Signing
- Skipping
- Zig-Zag / Stair-Stepping
- Miscalibration

Single Touch Tests

- Touch Stability Test (touch & hold)
- Vertical Line Draw
- Horizontal Line Draw
- Diagonal Line Draw
- Tap test

Multi-Touch Tests

- Look for interaction between the touches
- "Half Moon" or Circle test
- Proximity test

Sample Noise Test Pattern

TUNING

Tune in the order the firmware processes data

- 1. Self Capacitance
- 2. Mutual Capacitance
- 3. Touch Processing

MTCH6301

PCAP Hardware In production 2012

- •Up to 10 touches detected
- •>100 Reports per second single touch (>75 dual touch)
- Communication I²C
- Individual channel tuning for optimal sensitivity
- Supports sensor sizes up to approx 4.3"
- Up to 13 Receiver channels (RX)
- x 18 Transmitter (TX) channels o Works with
- plastic up to 3mm/ glass up to 5mm

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en559
101

mTouch

- Proximity sensing and 1D gesture
- 2D gesture
- 3D gesture

Focus of Electric Field

Guard sensor

- Same voltage as sensor pad
- Electric field controlled focus
- Increased sensitivity

Features

Slide 149

Microchip's Solutions For Proximity Sensing

Software

mTouch

Software Solution

■ mTouch[™] Solution Framework

- Can be downloaded From Microchip's Website
- Royalty-Free Source code available (C and ASM)
- Support for several PIC[®] MCU's
 - PIC10, PIC12, PIC16
- Handles traditional buttons & Slider + Proximity
- Integrated Proximity Features
 - Median Filter implementation
 - Proximity and Black Box Products
 - Adaptive Noise Cancelling (ANC) Filter
 - Only on Black Box products

© 2012 Microchip Technology Incorporated. All Rights Reserved.

Software Solution

• Framework Filtering : Median Filter

- Need to detect very small changes. Noise influence increases
- More robust filtering required: Median filter
 - Sample history in FIFO buffer
 - Samples are sorted by value
 - Middle samples are used

Median Filter Data Array sorted by time.

Software Solution

Black Box Product implementation only

Adaptive Noise Cancelling Filter

- Noise tracking mechanism
- Dynamic acquisition scheme
- Rate automatically adjusts to amount of noise
 - System automatically return to light filtering scheme when environment gets quieter

Microchip's mTouch™ Solution Tools

© 2012 Microchip Technology Incorporated. All Rights Reserved.

mTouch[™] Evaluation Kit

Featuring:

- 4 Motherboards
 - PIC16F1937 8-bit MCU
 - PIC18F46J50 8-bit MCU
 - PIC24FJ64GB106 16-bit MCU
 - PIC32MX795F512H 32-bit MCU
- 4 Sensor Daughter Boards
 - 2-Channel Slider
 - 4-Channel Slider
 - 8 Keys Direct Sense
 - 12-Key Matrix
- PICkit[™] Serial Analyzer
 - Program & Debug
- mTouch Solution Graphical User Interface

mTouch[™] Solution GUI

The mTouch Solution Graphical User Interface, included in mTouch Solution SW Package, allows to: 💋 bi Firmware Version: 2.0 Touch Method: CV/D mTouch Retained

mTouch

- Use Eval Kit or Custom Boards
 - **UART or USB interface**

Access all mTouch solution critical paramet

- Debug í
- Optimize mTouch operation

Monitor Sensor's data

- Real Time Data, Average
- Max/Min Í
- Sensitivity í
- Easily set up Thresholds
- Record and Export data to CSV forma.

Capacitive proximity sensing can be used in various applications

• Usually in power management

Inexpensive and easy implementation

- Few parts involved
- Regular material

• Microchip hardware available

- Standard MCU
- Ready to use solutions
- Evaluation kit

• Microchip Software available

- Framework including source code and various optimization tools
- Dedicated filtering

Gesture

 A motion of the limbs or body made to express or help express thought or to emphasize speech.

Pros and Cons

Advantages

- Natural way of interaction
- Remote interaction
- Cons
 - User dependent gestures
 - Few universal understandable gestures
 - Pattern recognition can be CPU extensive

2D Gesture

Gesture Examples

- Swipes
- Pinch
- Zoom in and out

3D Gesture

3D gesture experience

The 3D experience allows a more natural and fascinating browsing

Free-space interactions evoke simplicity

Users are getting more engaged with content through gestural control

... leading to more efficient and targeted browsing, navigation and shopping.

Technology Comparison for 3D Gesture Recognition

		E-Field	Optical 2D	Optical TOF	Infrared	Ultrasound
Base Spec.	Sensor Type	Electrodes	Built in Camera	Special Camera	IR LED + Prox	Speaker & R
	Range (in cm)	0-15	20-100	50-400	5-300	5-20
	Resolution	High (200 dot/cm)	Medium	High	High	Medium
	Real-time update rates	Yes (300pos/s)	No (50f/sec)	Yes	Yes	Yes
Design Features	Invisible, scratch-resistant	۲	۲	۲	٠	۲
	Resistant to lighting changes	۲	٠	٠	۲	
	Resistant to ambient sound		٠			۲
	Touch sense capability	۲	۲	٠		۲
	Gesture Applications					
	Full surface coverage (blind spots)	۲		۲		٩
	Close range sensing capability	٩	٠	۲		
Marke t	Glide-over-Surface market		٠	۲		
	Glide-over-Display market	٩	۲			
\$	System cost of ownership	Low	Low	High	Low	TBD

mTouch

© 2012 Microchip Technology Incorporated. All Rights Reserved.

mTouch

Microchip offers 1D, 2D and 3D solutions

• Easy Implementation

Integration

Thank you!

Appendices

Appendix A :: mTouch[™] Solution Glossary of Terms
Appendix B :: MASTERs 2011 mTouch Solution Classes
Appendix C :: Additional Reference Material
Appendix D :: mTouch Solution Waveforms
Appendix E :: CVD Math

Appendix A Glossary of Terms

• Average

A value calculated in real time by the system's firmware to estimate what the next reading of the sensor should be assuming no external interference.

Base SNR

The signal-to-noise ratio of the unfiltered sensor signal.

Baseline

See 'Average'.

Cover

A layer of typically plastic or glass that is placed between the application's PCB and the user's finger.

Crosstalk

The undesired shift of a neighboring sensor's readings when a user is pressing on a sensor.

CSM ("Capacitive Sensing Module")

An mTouch[™] hardware module used to measure the capacitive shift of a sensor using a frequency-based method. A timer module is used to count the number of oscillations the sensor's signal performs in a fixed amount of time.

• CTMU ("Charge Time Measurement Unit")

An mTouch[™] hardware module available in some PIC18 and PIC24 devices that uses a voltage-based acquisition method to measure the capacitance of a sensor.

CVD ("Capacitive Voltage Divider")

An mTouch[™] acquisition technique that uses a PIC's ADC module to take a voltage-based capacitive measurement of a sensor.

• Debounce

An algorithm process that requires the same answer be independently calculated N times in a row before a state change can occur, where N is greater than 1.

• Decoding

The algorithm process of taking an integer value that represents and analog signal and using it to determine the current state of the sensor.

• False Triggers

Incorrect sensor state transitions that are not caused by a finger's press or release. Do not confuse these with 'Flickering Buttons' which occur when a finger is present.

• Flickering Buttons

The sensor behavior of quickly toggling between sensor states while a finger remains pressed on the sensor. Do not confuse this with 'False Triggers' which occur when a finger is not present.

Hysteresis

A control theory technique that uses several signal thresholds to eliminate or reduce fast state toggling while the signal is transitioning from one state to the other.

Appendix A Glossary of Terms

• Impulse Noise

Individual or small groups of readings that behave in a significantly different manner than the readings before and after them due to a noise source and not a finger's press.

Noise

The unwanted disturbance of a signal usually caused by an external source.

Noise Immunity

The ability to remove or ignore the noise on a sensor's signal.

Oversampling

Taking more than one sample of a sensor's signal and combining them into one final reading that is then processed by the firmware's algorithm as one value.

Parasitic Capacitance

The unwanted capacitance that exists between two elements of a circuit simply because of their proximity to each other.

Permittivity

A measure of how much resistance is encountered when forming an electrical field through a material. Higher permittivity values mean less resistance.

Reading

The integer value that represents the sensor's current analog value and that is passed to the filtering or decoding algorithms. Not to be confused with 'sample'.

Reversed Operation

A phenomenon caused by a large amount of noise on the system which reverses the operation of the sensor. Pressing makes the sensor think it's been released and releasing makes the sensor think it's pressed.

• Sample

A single result from a hardware module that describes the sensor's current value. Multiple samples might be combined using the oversampling technique to create a 'reading' which is then used in the algorithm's calculations.

Sensitivity

A measure of how much a sensor's value will shift when a finger is pressed on it. The shift is sometimes defined in terms of the percentage of the total value, and sometimes as the absolute shift amount. The correct way to define it, however, is by calculating the SNR.

Signal-to-Noise Ratio (SNR)

A measure of how much sensitivity a system has compared to the level of noise on the signal. The higher the SNR, the cleaner the signal.

• Threshold

A limit used to define at what point a sensor should change states.

MICROCHIP MASTERs 2012 ADDA TOUCH™ Solution Classes

• 1659 WTT – Which Touch Tech. is Right for Your Application?

mTouch Solution Overview of all Capacitive Sensing Technologies

1660 CAP – mTouch Capacitive Solutions Hands-On

mTouch Solution Technical Details and Labs

- 1661 TTM Touch Sensing Through Metal mTouch Solution Metal-over-Capacitive Design
- 1662 RTS Techniques for Robust Touch Sensing
- 1663 ATT Advanced Touch Screen Technologies
 Projected Capacitive Touch Screens
- 1664 LPP Level, Pressure, and Position with mTouch

Reference designs for mTouch solution applications

www.microchip.com/mTouch

- Capacitive Touch Guidelines: AN1101, AN1102, AN1103, AN1104, AN1250, AN1171
- mTouch[™] Solution on Specific Parts: AN1202 (PIC10F20x)
- Water-Resistant Capacitive Sensing: AN1286
- mTouch Solution using the Period CSM Measurement: AN1268
- mTouch Solution Algorithm and Noise Simulation Software: AN1254
- Deviations Sorting Algorithm for CSM Applications: AN1312

www.microchip.com/webinars

 <u>The Scientist and Engineer's Guide to Digital Signal Processing</u> by Steven W. Smith, Ph.D. <u>http://www.dspguide.com</u>

Available in a free, downloadable PDF format!

• <u>Testing for EMC Compliance: Approaches and Techniques</u>

by Mark I. Montrose and Edward M. Nakauchi New Jersey: IEEE Press, 2004. Print.

• **Google:** Signal Detection Theory, Nelson Rules

Appendix D Waveforms - CVD

mTouch

Appendix D Waveforms - CTMU

Slide 183

Differential CVD Math

$$V(t) = V_0 e^{-t/RC} \qquad \qquad Q = CV$$

Step 1: Known states. Calculate stored charge.

 $\begin{array}{l} \begin{array}{l} & Q_{external} = C_{external} V_{external} \\ & Scan A \\ Q_{total} = Q_{external} + Q_{ADC} \\ Q_{total} = C_{external} V_{external} + C_{ADC} V_{ADC} \\ & Q_{total} = C_{external} V_{external} + C_{ADC} V_{ADC} \\ & Q_{total} = C_{external} V_{ss} + C_{ADC} V_{DD} \end{array}$

Step 2: Connect capacitors and allow charge to settle.

 $C_{total}V_{A} = C_{external}V_{SS} + C_{ADC}V_{DD} \qquad C_{total}V_{B} = C_{external}V_{DD} + C_{ADC}V_{SS}$ $V_{A} = \frac{C_{external}V_{SS} + C_{ADC}V_{DD}}{C_{external} + C_{ADC}} \qquad V_{B} = \frac{C_{external}V_{DD} + C_{ADC}V_{SS}}{C_{external} + C_{ADC}}$

© 2012 Microchip Technology Incorporated. All Rights Reserved.

Step 3: Find the difference between the settling points.

Differential CVD Math

$$V_{A} = \frac{C_{external}V_{SS} + C_{ADC}V_{DD}}{C_{external} + C_{ADC}}$$

$$V_B = \frac{C_{external}V_{DD} + C_{ADC}V_{SS}}{C_{external} + C_{ADC}}$$

Step 4: Subtract V_{Δ} when released from V_{Δ} when pressed.

$$V_{P\Delta} - V_{R\Delta} = \left(\frac{C_A C_F}{C_A^2 + C_A C_F + 2C_A C_B + C_B C_F + C_B^2}\right) \times 2V_{DD}$$

Assume:

MICROCHIP

MASTERs 2012

ADC Capacitance = 10pF Constant.

$$CVD = \frac{(V_{P\Delta} - V_{R\Delta})}{V_{DD}} \times 1024 \times O$$

The Microchip name and logo, the Microchip logo, dsPIC, KeeLoq, KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies.

© 2012, Microchip Technology Incorporated, All Rights Reserved.